13. Закон Кулона Задача # 13.22. | По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью ?=1 нКл/м. В центре кольца находится заряд Q=0,4 мкКл. Определить силу F, растягивающую кольцо. Взаимодействием зарядов кольца пренебречь. |
Задача # 13.21. | Тонкое полукольцо радиусом R=10 см несет равномерно распределенный заряд с линейной плотностью ?=1 мкКл/м. В центре кривизны полукольца находится заряд Q=20 нКл. Определить силу F взаимодействия точечного заряда и заряженного полукольца. |
Задача # 13.20. | Тонкое кольцо радиусом R=10 см несет равномерно распределенный заряд Q=0,l мкКл. На перпендикуляре к плоскости кольца, восставленном из его середины, находится точечный заряд Q1=10 нКл. Определить силу F, действующую на точечный заряд Q со стороны заряженного кольца, если он удален от центра кольца на: 1) l1=20 см; 2) l2=2 м. |
Задача # 13.19. | Тонкая бесконечная нить согнута под углом 90°. Нить несет заряд, равномерно распределенный с линейной плотностью ?=1 мкКл/м. Определить силу F, действующую на точечный заряд |
Задача # 13.18. | Тонкий длинный стержень равномерно заряжен с линейной плотностью ?=10 мкКл/м. Какова сила F, действующая на точечный заряд Q=10 нКл, находящийся на расстоянии а=20 см от стержня, вблизи его середины? |
Задача # 13.17. | Тонкая нить длиной l=20 см равномерно заряжена с линейной плотностью ?=10 нКл/м. На расстоянии а=10 см от нити, против ее середины, находится точечный заряд Q=l нКл. Вычислить силу F, действующую на этот заряд со стороны заряженной нити. |
Задача # 13.16. | Тонкий очень длинный стержень равномерно заряжен с линейной плотностью ? заряда, равной 10 мкКл/м. На перпендикуляре к оси стержня, восставленном из конца его, находится точечный заряд Q=10 нКл. Расстояние а заряда от конца стержня равно 20 см. Найти силу F взаимодействия заряженного стержня и точечного заряда. |
Задача # 13.15. | Тонкий длинный стержень равномерно заряжен с линейной плотностью ? заряда, равной 10 мкКл/м. На продолжении оси стержня на расстоянии а=20 см от его конца находится точечный заряд Q=10 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда. |
Задача # 13.14. | Тонкий стержень длиной l=10 см равномерно заряжен. Линейная плотность ? заряда равна 1 мкКл/м. На продолжении оси стержня на расстоянии а=20 см от ближайшего его конца находится точечный заряд Q=100 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда. |
Задача # 13.13. | В вершинах квадрата находятся одинаковые заряды Q=0,3 нКл каждый. Какой отрицательный заряд Q1 нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда? с зарядом, равномерно распределенным |
Задача # 13.12. | Три одинаковых заряда Q=l нКл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд Q1 нужно поместить в центре треугольника, чтобы его притяжение уравновесило силы взаимного отталкивания зарядов? Будет ли это равновесие устойчивым? |
Задача # 13.11. | Расстояние l между свободными зарядами Q1=180 нКл и Q2=720 нКл равно 60 см. Определить точку на прямой, проходящей через заряды, в которой нужно поместить третий заряд Q3 так, чтобы система зарядов находилась в равновесии. Определить величину и знак заряда. Устойчивое или неустойчивое будет равновесие? |
Задача # 13.10. | Два положительных точечных заряда Q и 4Q закреплены на расстоянии l=60 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд Q1 так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения заряда возможны только вдоль прямой, проходящей через закрепленные заряды. |
Задача # 13.9. | Два одинаковых проводящих заряженных шара находятся на расстоянии r=30 см. Сила притяжения F1 шаров равна 90 мкН. После того как шары были приведены в соприкосновение и удалены друг от друга на прежнее расстояние, они стали отталкиваться с силой F2=160 мкН. Определить заряды Q1 и Q2, которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними. |
Задача # 13.8. | Два одинаковых проводящих заряженных шара находятся на расстоянии r=60 см. Сила отталкивания F1 шаров равна 70 мкН. После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкивания возросла и стала равной F2=160 мкН. Вычислить заряды Q1 и Q2, которые были на шарах до их соприкосновений. Диаметр шаров считать много меньшим расстояния между ними. | 1 2 |