17. Электрическая емкость | Задача # 17.25. |  |  Пять различных конденсаторов соединены согласно схеме, приведенной на рис. 17.6. Определить электроемкость С4, при которой электроемкость всего соединения не зависит от величины электроемкости С5. Принять С1=8 пФ, С2 =12 пФ,. С3=6 пФ.   |  
 | Задача # 17.24. |  |  Определить электроемкость схемы, представленной на рис. 17.5, где С1=1 пФ, С2 =2 пФ,. С3=2 пФ и С4=4 пФ   |  
 | Задача # 17.23. |  |  Конденсаторы электроемкостями С1=2 мкФ, С2 = 2 мкФ,. С3=3 мкФ и С4=1 мкФ соединены так, как это показано на рис. 17.4. Разность потенциалов на обкладках четвертого конденсатора U4 =100 В. Найти заряды и разности потенциалов на обкладках каждого конденсатора, а также общий заряд и разность потенциалов батареи конденсаторов.  |  
 | Задача # 17.22. |  |  Конденсаторы электроемкостями С1=10 нФ, С2 =40 нФ,. С3=2 нФ и С4=30 нФ соединены так, как это показано на рис. 17.3. Определить электроемкость с соединения конденсаторов.  |  
 | Задача # 17.21. |  |  Конденсаторы электроемкостями C1=0,2 мкФ, С2=0,6 мкФ, С3=0,3 мкФ, С4=0,5 мкФ соединены так, как это указано на рис. 17.2. Разность потенциалов U между точками А и В равна 320 В. Определить разность потенциалов U1и заряд Q1на пластинах каждого конденсатора (i=l, 2, ,3, 4).  |  
 | Задача # 17.20. |  |  Конденсаторы соединены так, как это показано на pис. 17.1. Электроемкости конденсаторов: C1=0,2 мкФ, C2= 0,1 мкФ, C3=0,3 мкФ, С4=0,4 мкФ. Определить электроемкость С батареи конденсаторов.  |  
 | Задача # 17.19. |  |  Три одинаковых плоских конденсатора соединены последовательно. Электроемкость С такой батареи конденсаторов равна 89 пФ. Площадь S каждой пластины равна 100 см2. Диэлектрик -стекло. Какова толщина d стекла?  |  
 | Задача # 17.18. |  |  Конденсатор электроемкостью С1=0,6 мкФ был заряжен до разности потенциалов U1=300 В и соединен со вторым конденсатором электроемкостью С2=0,4 мкФ, заряженным до разности потенциалов U1=150 В. Найти заряд ?Q, перетекший с пластин первого конденсатора на второй.  |  
 | Задача # 17.17. |  |  Конденсатор электроемкостью С1=0,2 мкФ был заряжен, до  разности потенциалов U1=320 В. После того как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов U2=450 В, напряжение U на нем изменилось до 400 В. Вычислить емкость С2 второго конденсатора.  |  
 | Задача # 17.16. |  |  Два конденсатора электроемкостями С1=3 мкФ и С2=6 мкФ соединены между собой и присоединены к батарее с ЭДС. ?=120 В. Определить заряды Q1 и Q2 конденсаторов и разности  |  
 | Задача # 17.15. |  |  К воздушному конденсатору, заряженному до разности потенциалов U =600 в и отключенному от источника напряжения, присоединили параллельно второй незаряженный конденсатор таких же размеров и формы, но с диэлектриком (фарфор). Определить диэлектрическую проницаемость ? фарфора, если после присоединения второго конденсатора разность потенциалов уменьшилась до U1=100 В.   |  
 | Задача # 17.14. |  |  Конденсатор состоит из двух концентрических сфер. Радиус Rl внутренней сферы равен 10 см, внешней R2=10,2 см, Промежуток между сферами заполнен парафином. Внутренней сфере сообщен заряд Q=5 мкКл. Определить разность потенциалов U между сферами.  |  
 | Задача # 17.13. |  |  Две концентрические металлические сферы радиусами Rl=2 см и R2=2,1 см образуют сферический конденсатор. Определить его электроемкость С, если пространство между сферами заполнено парафином.  |  
 | Задача # 17.12. |  |  Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка. Конденсатор заряжен до разности потенциалов U1 = 100 В. Какова будет разность потенциалов U 2, если вытащить стеклянную пластинку из конденсатора?  |  
 | Задача # 17.11. |  |  Электроемкость с плоского конденсатора равна 1,5 мкФ . Расстояние d между пластинами равно 5 мм. Какова будет электроемкость С конденсатора, если на нижнюю пластину положить лист эбонита толщиной d1=3 мм?  |   1 2    |