Поиск:
HOME | § 1   § 2   § 3   § 4   § 5   § 6   § 7   § 8   § 9   § 10   § 11   § 13   § 14   § 15   § 16   § 17   § 18   § 19   § 20   § 21   § 22   § 23   § 24   § 25   § 26   § 27   § 28   § 29   § 30   § 31   § 32   § 33   § 34   § 35   § 36   § 37   § 38   § 39   § 40   § 41   § 105  

2. Динамика точки

Задача # 2.47.
Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период Т обращения, если нить отклонена на угол =60° от вертикали.
Задача # 2.46.
Грузик, привязанный к шнуру длиной l=50 см, описывает окружность в горизонтальной плоскости. Какой угол образует шнур с вертикалью, если частота вращения n=1 с1?
Задача # 2.45.
Самолет описывает петлю Нестерова радиусом R = 200 м. Во сколько раз сила F, с которой летчик давит на сиденье в нижней точке, больше силы тяжести Р летчика, если скорость самолета v=100 м/с?
Задача # 2.44.
К шнуру подвешена гиря. Гирю отвели в сторону так, что шнур принял горизонтальное положение, и отпустили. Как велика сила натяжения Т шнура в момент, когда гиря проходит положение равновесия? Какой угол ? с вертикалью составляет шнур в момент, когда сила натяжения шнура равна силе тяжести гири?
Задача # 2.43.
Акробат на мотоцикле описывает «мертвую петлю» радиусом r=4 м. С какой наименьшей скоростью vmin должен проезжать акробат верхнюю точку петли, чтобы не сорваться?
Задача # 2.42.
Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту п вращения, при которой кубик соскользнет с диска.
Задача # 2.41.
Два конькобежца массами m1=80 кг и m2=50 кг, держась за концы длинного натянутого шнура, неподвижно стоят на льду один против другого. Один из них начинает укорачивать шнур, выбирая его со скоростью v=1 м/с. С какими скоростями u1 и u2 будут двигаться по льду конькобежцы? Трением пренебречь.
Задача # 2.40.
В предыдущей задаче найти, с какой скоростью и2 и под каким углом ?2 к горизонту полетит большая часть снаряда, если меньшая полетела вперед под углом ?1=60° к горизонту.
Задача # 2.39.
Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая массой m1=3 кг получила скорость u1=400 м/с в прежнем направлении. Найти скорость u2 второй, большей части после разрыва.
Задача # 2.38.
На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом ?=60° к горизонту в направлении пути. С какой скоростью v1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью v2=600 м/с?
Задача # 2.37.
В предыдущей задаче найти, на какое расстояние а: 1) передвинется тележка, если человек перейдет на другой конец доски; 2) переместится человек относительно пола; 3) переместится центр масс системы тележка — человек относительно доски и относитель­но пола. Длина l доски равна 2 м.
Задача # 2.36.
На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса человека М =60 кг, масса доски т=20 кг. С какой скоростью и (относительно пола) будет двигаться тележка, если человек пойдет вдоль доски со скоростью (относительно доски) v=1 м/с? Массой колес пренебречь. Трение во втулках не учитывать.
Задача # 2.35.
В лодке массой m1=240 кг стоит человек массой m2=60 кг. Лодка плывет со скоростью v1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v=4 м/с (относительно лодки). Найти скорость и движения лодки после прыжка человека в двух случаях: 1) человек прыгает вперед по движению лодки и 2) в сторону, противоположную движению лодки.
Задача # 2.34.
Шар массой m=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость и шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу.
Задача # 2.33.
Парашютист, масса которого т=80 кг, совершает затяжной прыжок. Считая, что сила сопротивления воздуха пропорциональна скорости, определить, через какой промежуток времени t скорость движения парашютиста будет равна 0,9 от скорости установившегося движения. Коэффициент сопротивления k=10 кг/с. Начальная скорость парашютиста равна нулю.
1 2 3 4 5 6 7 
Решения по Физике МИРЭА.
sm