Задача # 3.20. | Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости
диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ? и тангенциальное ат ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев:
Категория: 3. Динамака вращения |
Задача # 3.19. | Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное а? ускорения точки В на стержне. Вычисления произвести для следующих случаев:
Категория: 3. Динамака вращения |
Задача # 3.18. | Определить момент инерции J тонкой плоской пластины со сторонами а=10 см и b=20 см относительно оси, проходящей
через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью ?=1,2 кг/м2.
Категория: 3. Динамака вращения |
Задача # 3.17. | Найти момент инерции J плоской однородной прямоугольной пластины массой т=800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см.
Категория: 3. Динамака вращения |
Задача # 3.16. | В однородном диске массой т=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
Категория: 3. Динамака вращения |
Задача # 3.15. | Диаметр диска d=20 см, масса т=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
Категория: 3. Динамака вращения |
Задача # 3.13. | Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
Категория: 3. Динамака вращения |
Задача # 3.12. | На концах тонкого однородного стержня длиной l и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стер и проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
Категория: 3. Динамака вращения |
Задача # 3.11. | Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки.
Категория: 3. Динамака вращения |
Задача # 3.9. | Два однородных тонких стержня: АВ длиной l1=40 см • и массой m1=900 г и CD длиной l2=40 см и массой l2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси 00', проходящей через конец стержня АВ параллельно стержню CD.
Категория: 3. Динамака вращения |
Задача # 3.8. | Вычислить момент инерции J проволочного прямоугольника со сторонами а=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линей ной плотностью ?=0,1 кг/м.
Категория: 3. Динамака вращения |
Задача # 3.7. | Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на а=20 см от одного из его концов.
Категория: 3. Динамака вращения |
Задача # 3.6. | Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины.
Категория: 3. Динамака вращения |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |