Задача # 4.9. | Масса Земли в n=81,6 раза больше массы Луны. Расстояние l между центрами масс Земли и Луны равно 60,3R (R — радиус Земли). На каком расстоянии r (в единицах R) от центра Земли находится точка, в которой суммарная напряженность гравитационного поля Земли и Луны равна нулю?
Категория: 4. Силы в механике |
Задача # 4.8. | Радиус R малой планеты равен 250 км, средняя плотность ?=3 г/см3. Определить ускорение свободного падения g на поверхности планеты.
Категория: 4. Силы в механике |
Задача # 4.7. | Радиус Земли в n=3,66 раза больше радиуса Луны; средняя плотность Земли в k=1,66 раза больше средней плотности Луны. Определить ускорение свободного падения gЛ на поверхности Луны, если на поверхности Земли ускорение свободного падения g считать известным.
Категория: 4. Силы в механике |
Задача # 4.6. | Радиус R планеты Марс равен 3,4 Мм, ее масса М = 6,4?1023 кг. Определить напряженность g гравитационного поля на поверхности Марса.
Категория: 4. Силы в механике |
Задача # 4.5. | Ракета, пущенная вертикально вверх, поднялась на высоту h=3200 км и начала падать. Какой путь s пройдет ракета за первую секунду своего падения?
Категория: 4. Силы в механике |
Задача # 4.4. | На какой высоте h над поверхностью Земли напряженность gh гравитационного поля равна 1 Н/кг? Радиус R Земли считать известным.
Категория: 4. Силы в механике |
Задача # 4.2. | Как велика сила F взаимного притяжения двух космических кораблей массой m = 10т каждый, если они сблизятся до расстояния r = 100 м?
Категория: 4. Силы в механике |
Задача # 4.1. | Центры масс двух одинаковых однородных шаров находятся на расстоянии r = 1 м друг от друга. Масса m каждого шара равна 1 кг. Определить силу F гравитационного взаимодействия шаров.
Категория: 4. Силы в механике |
Задача # 3.56. | Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку О (см. рис. 3.14). Определить угловую со и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=b=R, ?=?/2; 2) a=R/2, b=0, ?=?/3; 3) а=2R/3, b=2R/3, ?=5?/6; 4) a=R/3, b=R, ?=2?/3.
Категория: 3. Динамака вращения |
Задача # 3.55. | Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую со и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
Категория: 3. Динамака вращения |
Задача # 3.54. | Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О на стержне. Стержень отклонили от положения равновесия на угол а и отпустили (см. рис. 3.13). Определить угловую скорость со стержня и линейную скорость V точки В на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) а=0, b=l/2, ?=?/3; 2) а=l/3, b=2l/3, ?=?/2; 3) а=l/4, b=l, ?=2?/3.
Категория: 3. Динамака вращения |
Задача # 3.53. | Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол ?=60° от положения равновесия и отпустили. Определить линейную скорость ? нижнего конца стержня в момент прохождения через положение равновесия.
Категория: 3. Динамака вращения |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |